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A quantitative structure–property relationship (QSPR) study was performed on 42
homogeneous thermotropic liquid crystals (TLCs) to predict their nematic transition
temperatures (TN) using molecular descriptors calculated by CODESSA software. A heuristic
method (HM) was applied to select descriptors and generate models. The selected five
descriptors reflect the constitutional, steric and electronic characteristics that affect the
nematic transition phenomena. The high correlation coefficient, R2, of 0.9881 for the training
set indicates that a linear relationship exists between the structural information and TN in
TLCs. Satisfactory results were obtained. For the test set, this model gave an R2 of 0.96, a
root mean squared error of 6.3654 and an absolute average relative deviation of 9.2017%. The
results provide a simple, practical and effective method for the prediction of TN of TLCs and
the approach can be extended to other QSPR investigations.

1. Introduction

In thermotropic liquid crystals (TLCs), the nematic

phase is composed of rod-like molecules, the long axes

of which are preferably oriented along a given direction;

the phase is characterized by full translational disorder.

The nematic LC phases are technologically the most

important among all possible LC phases and, mainly

because of their unique physicochemical properties,

used in all commercially available LC displays [1].

As one of the earliest findings that indicated the

existence of an LC phase, the nematic–isotropic (N–I)

transition has been a topic of active and extensive

theoretical and experimental studies. Generally speak-

ing, the N–I transition is weak first order; however, it

was found that if the molecules prefer to line up

transverse to an applied field (an electric rather than a

magnetic field) there is a critical field above which the

phase transition is more closely a second-order one [2].

Marčelja [3] proposed a theory that accounts specifi-

cally for the effects of the end-chains on the anisotropic

interactions between the molecules. This theory pro-

vides good agreement with experimental data on I–N

transition temperatures (TN) and entropies, and

explains for the first time the odd–even effect of the

end-chains on these quantities along a homologous

series [3]. By extending this theory to the isotropic,

density-dependent component of the molecular interac-

tion, the predicted magnitudes of both (TN2T*)/TN and

its density variation across the N–I transition, as well as

the variation of TN with pressure, agree with experi-

mental values, where T* indicates the supercooling

temperature [4].

The N–I transition temperature (TN) is a significant

property in revealing both intramolecular and inter-

molecular aspects of TLCs and is very important in

their processing and application.

The quantitative structure–property relationship

(QSPR) approach has been widely used in the predic-

tion of physical and chemical properties of organic

compounds [5–7]. QSPR is based on the assumption

that the variation of the behaviour of the compounds,

as expressed by any measured physical or chemical

properties, can be correlated with changes in molecular

features of the compounds, termed descriptors.

Accordingly, the QSPR approach attempts to establish

simple mathematical relationships to describe the

correlation of a given property to molecular structures

for a set of compounds. The advantage of this approach

over other methods lies in the fact that it requires only

the knowledge of chemical structure and is not

dependent on the experimental properties.

The main steps involved in QSPR include data

collection, molecular geometry optimization, molecular

descriptor generation, descriptor selection, model devel-

opment and, finally, model performance evaluation. A*Corresponding author. Email: xjyao@lzu.edu.cn
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QSPR study cannot only develop a method for the

prediction of the property of new compounds that have

not yet been synthesized but also can identify and

describe important structural features of molecules that

are responsible for variations in molecular properties.

Recently, Garcı́a et al. [8] used multiple linear

regression (MLR) analysis to develop the first QSPR

model for prediction of TN for a homologous series of

42 TLCs. The nine-parameter model obtained is notable

for its excellent fit to experimental data, showing a

correlation coefficient R2 of 0.954 and a standard

deviation of 6.425% for the 29 compounds in the

training set that were modelled. However, this model

has some drawbacks. Firstly, inclusion of variables into

a QSAR/QSPR should meet stringent criteria, from

both a statistical and mechanistic (i.e. that the

parameter relates in some manner to activity) viewpoint

[9]. The ratio of observations to variables should be as

high as possible, and at least 5:1 [10], whereas the ratio

in this model is less than 5:1 (29:9<3:1). From the

statistics, if the number of variables is comparable to the

number of training patterns, the parameters of the

model may become unstable and unlikely to replicate if

the study were to be repeated. In this sense, this model is

too complex and will meet these problems. Secondly,

some of descriptors are highly inter-correlated (.0.95)

with one or two remainders (G and H, V and S, O and

S) and, therefore, leads to redundancy of information.

Depending on the nature of the regression technique,

the presence of the redundant features can cause the

system to focus attention on the idiosyncrasies of the

individual samples and lose sight of the broad picture

that is essential for generalization beyond the training

set. Based on the above observations, it is highly

necessary to investigate this data set again and develop

a new, more acceptable model to further investigate the

relationship between the property and structure.

One of the important problems for QSPR applica-

tions is the numerical representation (often called

molecular descriptor) of the chemical structure. The

built model performance and the accuracy of the results

are strongly dependent on the way the structural

representation is performed. Various numerical repre-

sentations of the compounds have been proposed in

QSPR studies, i.e. constitutional and topological

descriptors, numerical code, quantum chemistry

descriptors, etc. The software CODESSA, developed

by Katritzky et al. [11], enables the calculation of a large

number of quantitative descriptors based solely on the

geometrical and electronic structural information and

codes this chemical information into mathematical

form. CODESSA combines diverse methods for quan-

tifying the structural information about the molecule

with advanced statistical analysis to establish molecular

structure–property/activity relationships. CODESSA

has been applied successfully in a variety of QSPR

analyses [5–7].

In the present work, the CODESSA program was

used for the calculation of the descriptors and for the

statistical analysis to obtain multi-parameter QSPR

equations describing the TN of 42 TLCs. A heuristic

method was utilized to establish a quantitative linear

relationship between TN and the molecular structure.

The aim of the present study was to establish a QSPR

model that could be used for the prediction of TN for

TLCs from their molecular structures alone, and at the

same time, to seek for the important structural features

related to the N–I transition of these compounds.

2. Materials and methods

The data set for this investigation consists of 42 TLCs,

which have been used by Garcı́a et al. [8] to construct an

MLR model. All the molecules contain two aromatic

rings linked by an ester group, COO–, with different

terminal chains. The molecular structures as well as

their corresponding TN values are shown in table 1.

2.1. The calculation of structural descriptors

All molecules were drawn and pre-optimized using

molecular mechanics force fields in the HyperChem 6.0

program [12]. A more precise optimization was per-

formed with a semi-empirical AM1 method. All calcula-

tions were carried out at the restricted Hartree–Fock

level with no configuration interaction using the Polar–

Ribiere algorithm until rms gradient 0.1 kcal Å mol21.

The resulting geometries were transferred into the

MOPAC 6.0 program package to calculate optimized

structural coordinates and net atomic charges [13]. Then

the output files from MOPAC were transferred into the

CODESSA software package to calculate constitu-

tional, topological, geometrical, electrostatic and quan-

tum chemical descriptors. These descriptors contain

information about the connections between atoms,

shape, branching, symmetry, distribution of charge

and quantum-chemical properties of the molecule.

Using the above process, the major problem in QSPR

studies, i.e. the translation of molecular structure to

computer-readable form while retaining as much as

structural information as possible, is solved.

2.2. Heuristic method (HM)

The heuristic multilinear regression procedures avail-

able in the CODESSA program were used to perform a

complete search for the best multilinear correlations

with a multitude of descriptors. The heuristic method
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(HM) has the advantages of high speed and no

restrictions on the size of the data set. It can either

quickly give a good estimation about what quality of

correlation to expect from the data, or derive several

best regression models. Besides, it can demonstrate

which descriptors have bad or missing values, which

descriptors are insignificant and which descriptors are

highly inter-correlated. This information is helpful in

reducing the number of descriptors in QSAR/QSPR

studies.

The HM for descriptor selection proceeds with a pre-

selection of descriptors by sequentially eliminating

descriptors that do not match any of the following

criteria: (i) the F-test greater than one unit; (ii) R2 value

less than a value defined at the start (default 0.01); (iii)

the student’s t-test less than that defined (default 0.1);

and (iv) duplicate descriptors having a higher squared

inter-correlation coefficient than a predetermined level

(usually 0.8). Thereafter all possible one-parameter

regression models were tested and insignificant descrip-

tors were removed. The remaining descriptors are listed

in decreasing order of correlation coefficient when used

in one-parameter correlations. After the pre-selection of

descriptors, MLR models are developed in a stepwise

procedure. Starting with the top descriptor from the list,

two-parameter correlations are calculated. In the

Table 1. List of studied chemicals and experimental, calculated and predicted TN by HM and MLR by Garcı́a et al. [8].

No. L R TN (Exp.)/uC TN (HM)/uC %ARD TN (MLR)/uC %ARD

1 C5H11– O–CH3 42.2 43.0 22.0 39.9 5.5
2* C5H11– O–C2H5 63.4 65.6 23.5 47.4 25.2
3 C5H11– O–C3H7 44 45.9 24.4 50.2 214.1
4 C5H11– O–C4H9 57.7 49.2 14.7 52 9.9
5 C5H11– O–C5H11 51.8 54.6 25.3 50.8 1.9
6 C5H11– O–C6H13 59.3 58.1 2.1 53.2 10.3
7 C5H11– O–C7H15 57.4 56.9 0.9 55.6 3.1
8* C5H11– O–C8H17 60.6 53.2 12.2 56 7.6
9* C5H11– O–C9H19 58.4 57.7 1.2 54.9 6.0
10* C5H11– O–C10H21 60.3 59.8 0.8 54.1 10.3
11 C5H11– O–C12H25 60.6 59.9 1.1 52 14.2
12 C5H11– O–C14H29 60.9 58.6 3.7 52.9 13.1
13* C6H13– O–CH3 38 30.9 18.8 43 213.2
14 C6H13– O–C2H5 51.8 51.0 1.5 50.9 1.7
15 C6H13– O–C3H7 36 43.9 221.9 53.2 247.8
16* C6H13– O–C4H9 49.4 48.0 2.8 51.6 24.5
17* C6H13– O–C5H11 45 53.3 218.5 60.2 233.8
18 C6H13– O–C6H13 53.2 53.5 20.5 52.2 1.9
19* C6H13– C3H7– 40 23.5 41.2 37.3 6.8
20 C6H13– C5H11– 43.5 41.5 4.7 46.2 26.2
21 C6H13–O– C5H11– 63 64.8 22.8 61.4 2.5
22 C4H9–O– O–C8H17 89 86.7 2.6 85.3 4.2
23 C4H9–O– O–C9H19 86 86.6 20.7 88.1 22.4
24 C4H9–O– O–C10H21 87 85.8 1.4 85.7 1.5
25 C4H9–O– O–C12H25 84.5 86.6 22.5 88.1 24.3
26* C5H11–O– O–CH3 72 69.8 3.1 68.5 4.9
27 C5H11–O O–C2H5 90.8 92.6 22.0 79.8 12.1
28 C5H11–O O–C3H7 78.5 76.6 2.4 84.1 27.1
29 C5H11–O O–C4H9 82 83.8 22.2 81.4 0.7
30 C5H11–O O–C5H11 81 83.0 22.5 83.9 23.6
31 C5H11–O O–C6H13 84.5 84.8 20.4 85.5 21.2
32* C5H11–O O–C7H15 82 85.7 24.5 87.1 26.2
33 C5H11–O O–C8H17 85 85.6 20.7 88.5 24.1
34 C5H11–O O–C9H19 88 86.5 1.7 87.7 0.3
35 C5H11–O O–C10H21 82 85.4 24.2 87.1 26.2
36* C5H11–O O–C12H25 80 86.4 28.0 88.8 211.0
37* C5H11–O O–C14H29 78.2 81.8 24.6 88.3 212.9
38* C5H11–O O–C16H33 76.5 76.8 20.4 82.4 27.7
39 C5H11–O O–C18H37 74.7 75.6 21.2 78.6 25.2
40 C6H13–O– O–CH3 78.5 76.5 2.6 77.1 1.8
41 C6H13–O– O–C2H5 95.9 94.8 1.1 87.4 8.9
42 C10H21–O– O–C6H13 88.9 86.0 3.2 86.9 2.2

*Test set compounds
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following steps new descriptors are added one-by-one

until the pre-selected number of descriptors in the

model is achieved. The final result is a list of the 10 best

models according to the values of the F-test (F) and

correlation coefficient (R2). The goodness of the

correlation is tested by F, R2 and the standard deviation

(s). The stability of the correlations was tested against

the cross-validated coefficient (R2
cv) by focusing on the

sensitivity of the model to the elimination of any single

data point. Briefly, for each data point, the regression is

recalculated with the same descriptors but for the data

set without this point. The obtained regression is used

to predict the value of this point, and the set of

estimated values calculated in this way is correlated with

the experimental values.

The HM usually produces correlations 2–5 times

faster than other methods, with comparable quality [14].

The rapidity of calculations from the HM renders it the

first choice in practical research. Thus, in the present

investigation, we used this method to select descriptors

and build the linear model. A detailed discussion about

the HM can be found in the literature [15].

3. Results and discussion

To enable comparison with results in the literature, the

separation of the LCs into training and test sets is

identical with that used by Garcı́a et al. [8]. The training

set of 29 compounds was used to adjust the parameters

of the model, and the test set of 13 compounds was used

to evaluate model prediction ability.

In order to identify possible outliers and clusters,

principal component analysis (PCA) was performed by

using the whole data set. Result of PCA gives two

significant PCs (eigenvalues.1), which explains 78.64%

of the total variance in the descriptors (48.64% and

30.00%, respectively). Figure 1 shows a score plot of the

compounds in the training and test set. As can be seen

from figure 1, there are no obvious clusters in the

training and test set. Seven compounds, 14, 27, 40 and

41 in the training set and 2, 19 and 26 in the test set,

were found to be farther away from the majority of

compounds. There seems to be no evidence to suggest

that these compounds are outliers. Therefore, they are

retained in the data sets.

When adding another descriptor did not significantly

improve the statistics of a model, it was determined that

the optimum subset size had been achieved. To avoid

over-parameterization of the models, such as those

which contain an excess of descriptors and are difficult

to interpret in terms of physical interactions, an increase

of the R2 value of less than 0.02 was chosen as the

breakpoint criterion. At the same time, the model with

more than five parameters was not considered because

the number of compounds should be five times at least

the number of the parameters, generally [10].

After HM, five descriptors were selected to develop a

linear model (shown in figures 2 and 3). The goodness-

of-fit parameters for the obtained model are R250.9754,

F5182.44, s53.0686, and R2
cv50.9615, respectively,

which are better than corresponding values of the MLR

model derived by Garcı́a et al. [8], indicating that the

training set is described relatively well by these five

descriptors and that this model can be expected to be a

better predictor of TN. Using this model, the TN values

for the training set compounds were calculated. The

estimated root mean square error (RMSE) and the

Figure 1. Principal component analysis of the structural
descriptors for the data set.

Figure 2. Influence of number of descriptors on R2 and R2
cv

of the regression models.
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absolute average relative deviation (AARD) were

2.7324 and 3.3508%, respectively, which are smaller

than those of 5.5391 and 6.8322% in the work by Garcı́a

et al. [8] (our calculation).

In the present model, each compound is represented

by a five-dimensional vector, components of which are

the selected five descriptors. The names, chemical

meaning and statistical characteristics of these descrip-

tors were summarized in table 2, and the correlation

matrix is shown in table 3. From table 3, it can be seen

that all of the linear correlation coefficients of any two

descriptors are less than 0.8, which means that the

descriptors in the HM model are independent. The high

correlation coefficient R2 of 0.9754 indicates that a

linear relationship exists between the structural infor-

mation and the TN of TLCs.

In the model obtained, RNO, the relative number of

oxygen atoms in a molecule, reflects the constitutional

factor influencing the generation of nematic phases. In

the work of Garcı́a et al. [8], the dummy descriptors L

and R were employed to reflect the number of oxygen

atoms present in the terminal chain. The principal

moment of inertia of the molecules around the z-axis,

IC, is a geometrical descriptor. In rigid rotator

approximation, IC can be calculated as follows

IC~
X

i

mir
2
iz, ð1Þ

where mi are the atomic masses and riz denote the

distance of ith atomic nucleus from the main rotational

axis z of the molecule [16]. This descriptor characterizes

the mass distribution in the molecule and represents the

steric characteristic influencing the nematic phase

phenomena. EMax, S(C) is the maximum atomic state

energy for a C atom, EMin,C(CH) is the minimum

coulombic interaction for a C–H bond and Etot,(CO) is

the maximum total interaction for a C–O bond. The

above three descriptors belong to quantum mechanical

energy-related descriptors, which indicate the impor-

tance of the intramolecular electronic effects on the

intermolecular electrostatic interactions of a molecule in

determining the TN of TLCs. According to the values of

t-test, which reflects the significance of the parameter

within a particular model (table 3), IC is the most

important parameter in this model and this indicates

that steric characteristics play a significant role in the

generation of nematic phases of TLCs. This agrees well

with a general point of view that the observed phase is

mainly determined by the geometrical shape of the

molecule.

The model was then applied to the test set to evaluate

its prediction capability. This model gave a predictive

correlation coefficient, R2, of 0.9216 for the test set. The

predicted RMSE and AARD were 6.3654, and 9.2017%,

respectively, which are better that those of 8.0791 and

11.5346% of MLR model by Garcı́a et al. [8] (our

Figure 3. Influence of number of descriptors on the standard
error (s) of the regression models.

Table 2. Descriptors, coefficients, standard error, and t-test for the linear model by HM.

Descriptor Chemical meaning X DX t-test

Intercept 26.59E+04 9.50E+03 26.9352
IC Moment of inertia C 23.52E+04 1.76E+03 219.9549
RNO Relative number of O atoms 1.13E+03 9.37E+01 12.0163
EMax, S(C) Max. atomic state energy for a C atom 5.66E+02 8.15E+01 6.9513
EMin,C(CH) Min. coulombic interaction for a C–H bond 6.13E+02 1.10E+02 5.5534
Etot,(CO) Max. total interaction for a C–O bond 2.05E+02 5.18E+01 3.9642

Table 3. Correlation matrix of the selected five descriptors
by HM.

RNO IC EMax, S(C) Etot,(CO) EMin,C(CH)

RNO 1
IC 0.625 1
EMax, S(C) 0.440 0.240 1
Etot,(CO) 20.442 20.164 20.755 1
EMin,C(CH) 0.454 20.065 0.062 20.079 1
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calculation), confirming the predictive capability of the

HM model we proposed.

The predicted results for the test set as well as

calculated values for training set are listed in table 1 and

shown in figure 4. From figure 4, it can be seen that

several points show relatively large scatter around the

straight line. For the training set, 93.10% of the

compounds show absolute relative errors less than 5%,

but two compounds, 4 and 15, show large relative errors

of 214.68% and 21.93%, respectively. Within the test

set, 61.53% of the compounds have absolute relative

errors of less than 5%, and 69.23% show absolute

relative errors less than 9%, with compounds 8, 13, 17

and 19 showing large relative errors of 212.23%,

218.76%, 18.44% and 41.16%, respectively. For MLR

model derived by Garcı́a et al. [8], 55.17% of the

compounds in the training set show absolute relative

errors less than 5% and 79.31% have absolute relative

errors of less than 10%, with molecule 15 showing a

large relative error of 47.78%. In the case of the test set

in the work of Garcı́a et al. [8], only 15.38% compounds

show absolute relative errors less than 5% and 53.85%

show absolute relative errors less than 10%, respec-

tively, with molecule 17 having a large relative error of

33.78%.

Based on the above observations, it can be easily seen

that the predicted results obtained using the HM model

are more accurate than those of MLR model derived by

Garcı́a et al. [8]. In addition, the HM model is based on

five descriptors that are independent of each other (as

shown in the correlation matrix in table 3). As for the

MLR model derived by Garcı́a et al. [8], nine

descriptors were used, some of which are high

inter-correlated (.0.95) with one or two remainders

(G and H, V and S, O and S), leading to redundancy of

information. In this sense, the HM model we propose is

easier to interpret, more reliable and more accurate than

the MLR model.

Further investigation on the results indicates that

compounds 17 and 19 likely to exert a very large

leverage on the statistical parameters for the test set.

When compound 19 was discarded from the test set, an

improvement in the predictive parameters can be

observed, with R250.9304, RMSE54.4340 and

AARD56.0350%. In the case of discarding compound

17, the predictive parameters change to R250.9657,

RMSE55.9312 and AARD57.7776%. Initially, we

suppose this may be due to the structural difference of

these two compounds from the compounds in the

training set. From the above discussion, it can be

concluded IC is the most important structural factor in

the generation of nematic phases of TLCs. Therefore,

we performed a careful study on the distribution of IC

for each molecule and the result is shown in figure 5.

From figure 5, it can be seen that the value for molecule

19 is further away from those of the rest of the

compounds. It is likely that this difference leads to the

poor prediction for this compound. However, no

obvious difference can be observed after carefully

reviewing both the IC distribution and the first two

principal components for the compound 17. So, the

reason for the poor prediction for compound 17 still

remains unknown.

4. Conclusion

With molecular descriptors generated using the

CODESSA program, a quantitative structure–property

Figure 5. Distribution of IC for different compounds.
Figure 4. Plot of predicted vs. experimental transition
temperature for the training and test set by heuristic method.
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relationship model was developed successfully to predict

the nematic transition temperature of 42 homologous

series of thermotropic liquid crystal molecules. The five

descriptors selected by the heuristic method available in

CODESSA reflect information affecting the generation

of nematic phases, i.e. the constitutional, steric and

electronic characteristics. The model should be able to
predict the nematic transition temperature of unknown

or unavailable compounds of this class, as indicated by

the high correlation coefficient, small root mean

squared error and absolute average relative deviation

of the test set. Moreover, the results provide a simple,

practical and effective method prediction of the nematic

transition temperature of thermotropic liquid crystals.
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